ISSN 1070-4280, Russian Journal of Organic Chemistry, 2009, Vol. 45, No. 10, pp. 1528–1530. © Pleiades Publishing, Ltd., 2009. Original Russian Text © A.A. Nikishin, V.D. Dyachenko, A.N. Chernega, 2009, published in Zhurnal Organicheskoi Khimii, 2009, Vol. 45, No. 10, pp. 1544–1545.

Unexpected Formation of 4,4,6-Trimethyl-2-oxo-1-phenyl-1,2,3,4-tetrahydropyridine-3-carbonitrile via Tandem Knoevenagel Condensation–Michael Addition– Intramolecular Cyclization

A. A. Nikishin^{*a*}, V. D. Dyachenko^{*a*}, and A. N. Chernega^{*b*}

^a Taras Shevchenko Lugansk National University, ul. Oboronnaya 2, Lugansk, 91011 Ukraine e-mail: dvd_lug@online.lg.ua

^b Institute of Organic Chemistry, National Academy of Sciences of Ukraine, ul. Murmanskaya 5, Kiev, 02660 Ukraine

Received October 17, 2008

Abstract—Knoevenagel condensation (Cope version) of acetone with cyanoacetanilide resulted in the formation of 4,4,6-trimethyl-2-oxo-1-phenyl-1,2,3,4-tetrahydropyridine-3-carbonitrile whose structure was determined by X-ray analysis.

DOI: 10.1134/S1070428009100182

Prospects in the design of pharmacologically active compounds on the basis of 4,4-disubstituted tetrahydropyridines stimulated studies on new accessible methods for their synthesis [1]. Such structures are generally obtained by condensation of aliphatic ketones with cyanoacetamides [2] or of cinnamic acid chloride with substituted 3-aminoacrylonitriles [3]. We previously proposed a new synthesis of 4,4-disubstituted tetrahydropyridines by reaction of substituted ethyl crotonoates with cyanothioacetamide and *N*-methylmorpholine [4]. In the present work we examined the condensation of acetone (I) with cyanoacetanilide (II) according to Knoevenagel (Cope version) [5]. However, we failed to isolate the corresponding alkene **A**, for the latter underwent further transformations. Presumably, Michael addition of acetone I to alkene **A** gave adduct **B**, and its subsequent intramolecular condensation resulted in the formation of previously unknown 4,4,6-trimethyl-2-oxo-1-phenyl-1,2,3,4-tetrahydropyridine-3carbonitrile (III) (Scheme 1). The structure of compound III was unambiguously proved by X-ray anal-

ysis. The general view of molecule III is shown in figure; principal bond angles and bond angles are also given. The $N^1C^1C^2C^3C^4C^5$ six-membered ring is not planar (deviations of atoms from the mean-square plane reach 0.31 Å); it has a half-boat conformation with the following modified Cramer-Pople parameters [6]: S = 0.65, $\psi = 26.0^{\circ}$, $\theta = 49.0^{\circ}$. Owing to steric hindrances, the benzene ring (C⁶–C¹¹) is almost orthogonal to the $N^1C^1-C^5$ ring: the corresponding dihedral angle is 83.9°. The N¹ atom is characterized by planartrigonal bond configuration with the sum of the bond angles 359.9(6)°. Effective conjugation between the lone electron pair on the N¹ atom and π -system of the double $C^1=O^1$ bond is responsible for shortening of the $N^{1}-C^{1}$ bond to 1.363(3) Å relative to purely single $N(sp^2)-C(sp^2)$ bond (1.43–1.45 Å [7]). The molecular conformation is quite favorable for such interaction: the torsion angle $O^1C^1N^1C^6$ is as small as 1.5°.

EXPERIMENTAL

The IR spectrum of **III** was recorded in mineral oil on an IKS-40 spectrometer. The ¹H NMR spectrum was measured on a Bruker DR-500 instrument (500.13 MHz) using tetramethylsilane as internal reference. The mass spectrum (electron impact, 70 eV) was obtained on a Chrommas HP 5890/5972 GC–MS system (HP-5 MS column; sample was injected as a solution in methylene chloride). The melting point was determined on a Kofler hot stage. The progress of the reaction was monitored by TLC on Silufol UV-254 plates using acetone–hexane (3:5) as eluent; development with iodine vapor.

The X-ray diffraction data for a single crystal of compound III, $0.08 \times 0.15 \times 0.55$ mm, were acquired at room temperature on a Bruker Apex II automatic CCD diffractometer (Mo K_{α} irradiation, $\lambda = 0.71069$ Å, $\theta_{\text{max}} = 29^{\circ}, -15 \le h \le 7, -9 \le k \le 9, -17 \le l \le 20$). Total of 6512 reflection intensities were measured (3346 independent reflections with $R_{int} = 0.035$). Monoclinic crystals with the following unit cell parameters: a =11.715(3), b = 7.433(2), c = 15.251(4) Å; $\beta =$ $90.933(7)^{\circ}$; V = 1327.9(6) Å³; M 240.3; Z = 4; $d_{calc} =$ 1.20 g/cm³; $\mu = 0.77$ cm⁻¹; F(000) = 512; space group $P_1/2n$ (no. 14). The structure was solved by the direct method and was refined by the least-squares procedure in full-matrix anisotropic approximation using CRYSTALS software package [8]. The refinement was performed with 1243 reflections characterized by I > $3\sigma(I)$ (163 refined parameters, 7.6 reflections per parameter). All hydrogen atoms were localized by difference syntheses of electron density and were refined

Structure of the molecule of 4,4,6-trimethyl-2-oxo-1-phenyl-1,2,3,4-tetrahydropyridine-3-carbonitrile (**III**) according to the X-ray diffraction data. Principal bond lengths and bond angle: N^1-C^1 1.363(3), N^1-C^5 1.435(3), N^1-C^6 1.454(3), C^1-C^2 1.521(4), C^2-C^3 1.540(4), C^3-C^4 1.506(4), C^4-C^5 1.324(4) Å; $C^1N^1C^5$ 122.4(2)°.

with fixed positional and thermal parameters. Chebyshev's weight scheme [9] with four parameters (0.56, -0.91, 0.14, and -0.57) was applied. The final divergence factors were R = 0.045, $R_w = 0.047$; goodness of fit 1.109. The residual electron density from the Fourier difference series was -0.22 and 0.16 $e/Å^3$.

4,4,6-Trimethyl-2-oxo-1-phenyl-1,2,3,4-tetrahydropyridine-3-carbonitrile (III). A mixture of 0.18 ml (2.5 mmol) of acetone (I), 1.6 g (1 mmol) of cvanoacetanilide (II), and a catalytic amount of piperidinium acetate in 25 ml of benzene was heated for 6 h under reflux in a flask equipped with a Dean-Stark trap. After separation of the calculated amount of water, the solvent was distilled off, and the light vellow precipitate was filtered off and washed with ethanol. Yield 1.95 g (81%), mp 175-178°C (from MeOH). IR spectrum, v, cm⁻¹: 1670 (C=O), 2248 (C=N). ¹H NMR spectrum, δ , ppm: 1.23 s (3H, CH₃), 1.30 s (3H, CH₃), 1.55 s (3H, CH₃), 4.05 s (1H, 3-H), 5.04 s (1H, 5-H), 7.12 d (2H, H_{arom}, J = 7.04 Hz), 7.36 t $(1H, H_{arom}, J = 7.51 Hz), 7.43 t (2H, H_{arom}, J =$ 7.51 Hz). Mass spectrum: m/z 241 (base peak) $[M+1]^+$. Found, %: C 74.88; H 6.67; N 11.59. C₁₅H₁₆N₂O. Calculated, %: C 74.97; H 6.71; N 11.66.

REFERENCES

- Culliamet, G., J. Pharm. Belg., 1994, vol. 49, p. 216; Pavlov, S., Bogavac, M., and Arsenijevic, Z., Pharmazie, 1990, vol. 45, p. 286; Kuznetsov, V.V., Khim.-Farm. Zh., 1991, no. 7, p. 61.
- FRG Patent Appl. no. 3844355, 1990; *Ref. Zh., Khim.*, 1991, no. 10N108P.

- Chowdhury, A.K.D., Sarkar, M., Chowdhury, S.R., and Mahalanabis, K.K., *Synth. Commun.*, 1996, vol. 26, p. 4233.
- Dyachenko, V.D., Nikishin, A.A., and Litvinov, V.P., *Khim. Geterotsikl. Soedin.*, 1997, p. 996; Dyachenko, V.D., Nikishin, A.A., and Chernega, A.N., *Khim. Geterotsikl. Soedin.*, 2003, p. 1316.
- Organikum. Organisch-chemisches Grundpraktikum, Berlin: Wissenschaften, 1964, 3rd ed. Translated under the title Obshchii praktikum po organicheskoi khimii, Moscow: Mir, 1965, p. 445.
- Zefirov, N.S. and Palyulin, V.A., Dokl. Akad. Nauk SSSR, 1980, p. 111.
- Burke-Laing, M. and Laing, M., Acta Crystallogr., Sect. C, 1976, vol. 32, p. 3216; Allen, F.H., Kennard, O., Watson, D.G., Brammer, L., Orpen, A.G., and Taylor, R., J. Chem. Soc., Perkin Trans. 2, 1987, p. S1.
- Watkin, D.J., Prout, C.K., Carruthers, J.R., and Betteridge, P.W., *CRYSTALS*, Chemical Crystallography Laboratory, Univ. of Oxford, 1996, p. 10.
- 9. Carruthers, J.R. and Watkin, D.J., Acta Crystallogr., Sect. A, 1979, vol. 35, p. 698.